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Turbulence, diffusion and patchiness in the sea
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' Division of Environmental Studies, University of California, Davis, California 95616-8576, U.S.A.
2Marine Sciences Research Center, State University of New York, Stony Brook, New York 11794-5000, U.S.A.

SUMMARY

We explore the role that biological processes play in the patchiness of plankton populations in the sea.
We ask how population interactions modify the variance in plankton density as a function of spatial scale
(i.e. the variance spectrum) from that expected if the biota were merely passive tracers. Using an
approximate model for two limiting cases of turbulence - the inertial subrange and two-dimensional
turbulence — we consider a simple predator — prey formulation for interacting populations in a turbulent
ocean. No simple generalizations emerge. The interacting populations ‘redden’ (i.e. more variance at
large scale) the spectrum of the passive tracers in the inertial subrange. Conversely, the interaction
‘whitens’ (i.e. less variance at large scale) the passive tracer spectrum for two-dimensional turbulence.

This mirrors results in terrestrial environments.

INTRODUCTION

The vast majority of marine organisms are planktonic.
By definition, then, they are largely at the mercy of
the motions in the sea. For many decades investigators
have known that the planktonic organisms are neither
uniformly nor randomly distributed in the ocean
(Hardy & Gunther 1935; Cassie 1963; Steele 1978;
Mackas et al. 1985). Rather, they exist in clumps, or in
patches; and, commonly, one speaks of patchiness, or
plankton patchiness. Planktonic organisms are, of
course, not mere passive tracers of the flows in the sea.
They grow, reproduce, are preyed upon (and, in turn,
prey upon other plankton), compete for resources, die,
etc., in the moving marine environment. It is still
unclear, after several decades of intense study, in what
situations either the physical processes of concentra-
tion (convergence) and dispersion (divergence), or the
many biological processes (growth, reproduction, even
behavior) control the spatial distribution of plankton
in the sea.

How can one understand the coupling of biolo-
gical and physical processes in order to explain the
patchiness of plankton in the sea? Consider some
measureable quantity, ¢: temperature, salinity, nitrate
concentration, chlorophyll concentration or zooplank-
ton biomass. In any segment of the water column one
can write

dg/dt = F; — Fo + P — C. (1)

Equation (1) is a budget for the rate of change of the
quantity g; Fy (Fo) is an input (output) flux of ¢; P is
the rate at which ¢ is produced within the control
volume, and C is the rate at which ¢ is consumed.
Budgets cannot be constructed for all quantities. One
calls those important quantities for which budgets can
be written down ‘conserved’; familiar examples of
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conserved quantities include momentum, energy, and
mass. The traditional emphasis in biological investiga-
tions has been on P and C, the production and
consumption terms. But in many situations budgets
may be dominated by the physical transport fluxes, F;
and Fg. In even more situations the relative impor-
tance of physical transport processes (F1,Fo) compared
to biological processes (P,C) is not known. The
evaluation of a budget almost always demands under-
standing of the coupling between biology and physics
in the ocean. And spatial distribution, i.e. patchiness,
is just one example of this general consideration.

The study of patchiness in plankton populations has
a long history. The 1970s saw a sharp upswing in
interest in this topic. Perhaps the earliest and most
influential of such studies was that of Platt (1972) who
investigated the fluctuations in chlorophyll concentra-
tion in the Gulf of the St Lawrence. Platt found that
the power spectrum (or variance spectrum) of the
chlorophyll fluctuations followed closely the &~ °°
shape predicted for high Reynolds number turbulence
in the inertial subrange (Kolmogorov 1941). £k is a
wavenumber, with units of inverse length; the power
spectrum describes the functional dependence of the
variance on k (and hence upon spatial scale). The sum
of the power spectral estimates for all £ (i.e. the
integral of the power spectrum over all k) equals the
total variance in the record of the fluctuating quantity
under study (Bendat & Piersol 1986). Subsequent
studies found similar results for chlorophyll in lakes
(Powell et al. 1975) and estuaries (Lekan & Wilson
1978). In an elegant study Denman (1976) showed
(and interpreted) the difference between the chloro-
phyll variance spectrum (i.e. a biologically controlled
quantity) and temperature variance spectrum (i.e.
a physically controlled quantity) in the coastal
ocean.
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A summary statement of such studies might be that
all the power spectra seem to have a region where they
follow a k ~°® shape (often statistically difficult to
distinguish from a & ~* shape). Some exceptions are
worth noting. At lower wavenumbers (larger spatial
scale) the spectra may become less steep than & ~2 i.e.
‘whiter’ (Denman 1976); n.b. a ‘white’ spectrum is
flat, that is, no dependence upon k. Spectra for higher
trophic level organisms (e.g. zooplankton) seem to be
less steep than £ ~2 i.e. ‘whiter’ (e.g. Mackas & Boyd
1979; Weber et al. 1986). Physical, chemical, or
topographic discontinuities can modify the slopes of
these spectra (Leigh-Abbott e/ al. 1978; Abbott et al.
1982), but, in general, biologically interesting quanti-
ties are spatially distributed as though they were
distributed solely by ‘the physics’.

Although a number of significant papers on patchi-
ness and spatial distribution continue to appear, the
intense interest of the early to mid-1970s seems to have
waned with the appearance of Steele’s (1978) review
volume. Interest in this field turned to the exciting
developments in satellite oceanography. Satellite
images of very detailed surface patterns for both
chlorophyll and temperature at scales never imagined
by previous generations of oceanographers soon
become a staple in many articles published in oceano-
graphy. And the ‘physical-biological coupling’ ques-
tions that had driven patchiness investigators began to
be asked of individual surface features seen at ‘satel-
lite’ scales (Abbott & Zion 1985, 1987; Denman &
Abbott 1988). Moreover, with the rapid increase in
computing power and sophistication investigators
began to construct detailed ‘process models’ of such
coupled biological-physical features (see Hofmann
1988; Werner et al. 1993). It can be argued that, with
some notable exceptions, recent investigations have
turned away from the search for broad generalities
about spatial patterns. Indeed, numerical modelling
results seem to indicate that even very minor changes
in parameter values lead to vastly different spatial
distributions (Werner et al. 1993); accordingly, the
search for generalities could, in principle, be fruitless.

In this paper we return to this question of generali-
ties about spatial patterns in plankton communities.
We ask a more modest question: how do biological
interactions modify the patchiness that physical pro-
cesses by themselves generate? Can one find any
generalities here? One answer to these questions has
three parts. First, one must have a ‘general’ model of
physical processes. Toward this end we sketch an
approximation to turbulent diffusion (a more com-
plete exposition of this approximate turbulence model
will appear in a more specialized publication).
Second, we show how the addition of biological
interactions might modify the spatial patterns that
result from this simple model of turbulent diffusion.
Finally, we conclude by discussing how our results
compare to those one might find in terrestrial environ-
ments.

2. THE PHYSICS OF DIFFUSION

One can represent diffusion processes in the sea
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through the Navier—Stokes (N.-S.) equation(s) for an
incompressible, non-rotating fluid.

ou

l 2
6l+u Vu=—;V/)+vV u + f, (2)

u is the velocity, p is the pressure, p is the density, and
v is the kinematic viscosity. We have added an
additional (random) force, f(x,t), that is assumed to
be non-divergent. Thus, V+u =V - f= 0. f is neces-
sary to generate and maintain a turbulent velocity
field in an infinite fluid. f might arise from, say, wind
stress fluctuations at the ocean surface. Incorporating
rotational (Coriolis) effects in our formulation would
be an important addition, but would take us unneces-
sarily far from the points we wish to present (but see
Holloway 1986).

The pressure can be climinated by taking the
divergence of equation (2) and writing down the
particular solution of the resulting Poisson equation
(see Batchelor 1953, Chapter 5; or McComb 1991,
Appendix D). Equation (2) now involves only compo-
nents of the velocity. To proceed we take Fourier
components of the velocity, #, and the (random)
force, f substitute into the N.-S.equations (2), and
make a suitable definition for a scale-dependent (i.e.
wavenumber-dependent) turbulent viscosity, D(k).
The result is

 Jko)
“ o+ E2(D(k) + )

(k) (3a)

where

— D)k 5y (k) =
fd %k (k — k’,w)[ — (K W) + %k, ﬁ,(k’,w)]. (3b)

One can integrate over all directions in wave-
number (k) space, and over all frequencies, ®, to
obtain an expression that relates the power spectrum
[F (k)] of the random force (f), to the energy
spectrum [E(£)] for the fluid flow (u).

L(k) = F(k)[E*(D (k) + v). (4)

The units for F(k) are (L*7 ~®) and for E(k) are
(L®T ~?). Furthermore, note that E(k) falls off much
more rapidly as a function of £ than F(k) because of
the factor of £% in the denominator of equation (4).

(a) Two examples

No general solution of the nonlinear N.-S. equa-
tions (2) is known. Much of what investigators of
turbulence have determined about the phenomenon
has been learned from careful laboratory experimen-
tation and field observation, as well as numerical
simulation of subsets (or, increasingly, the full set) of
the N.-S. equations. One deceptively simple, but
extremely powerful technique, dimensional analysis,
has yielded much insight. Using dimensional results
we will present here two special cases that apply to
many oceanographic conditions. The first is Kolmo-
gorov’s inertial subrange; the second is strictly two-
dimensional turbulence. In this article we can only
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briefly describe a few of the details of turbulence in
these two régimes. The reader is directed to texts such
as Tennekes & Lumley (1972), Hinze (1975),
McComb (1991); or the review literature (e.g. Gar-
gett 1989) for further exposition.

(1) Kolmogorov’s inertial subrange

At high Reynolds numbers the energy-containing
eddies are almost always large in size. It is in this
large-scale realm where the turbulent kinetic energy is
generated. Conversely, turbulent kinetic energy is
dissipated (to heat) at small scales (say, a centimeter
or less) by viscosity. As long as the Reynolds number
is sufficiently high these two realms are widely sepa-
rated in scale. The régime between the generation
realm and the dissipation realm is called the inertial
subrange. In the inertial subrange the turbulence is
completely characterized by one number, the energy
dissipation rate, ¢ (units: L27 ~?) at wavenumber £.
(Note: at equilibrium ¢ is also the rate of transfer of
turbulent kinetic energy from large to small scales via
vortex stretching.)

Accordingly, on dimensional grounds alone

F(k)oce k=" (units: LT ~9), (5a)
D(k) oc e® k=3 (units: L2T ). (5b)

Substituting these expressions into equation (4) and
using v < D one obtains Kolmogorov’s famous — 5/3
law.

E(k) oc €23k =53 (units: LT ~2), (6)

(Note: a particularly clear version of Kolmogorov’s
original paper (1941) has recently appeared in Eng-
lish (Hunt et al. 1991).)

(i) Two-dimensional turbulence

When the turbulence is completely two dimensional
one finds a conservation law for the square of the
component of vorticity perpendicular to the plane of
the motion. The square of the vorticity is called the
enstrophy (when considering turbulent flows the
enstrophy is the mean squared vorticity). And in this
two-dimensional régime the turbulence is completely
characterized by one number, the enstrophy dissipa-
tion rate, § (units: 7 ~2) at wavenumber £.

As above, on dimensional grounds alone

Flk)oc 0%2 k=3 (units: L3T %), (7a)
D(k) oc 0¥ k=% (units: L2T ). (7b)

Substituting these expressions into equation (4), and

using v < D one finds the familiar — 3 power law
(Kraichnan 1967).
Ek)ocOk3 (units: L3T ~2). (8)

In summary, our simple diffusion approximation
model for turbulence regards the nonlinear transport
terms for the Fourier components of the velocity as a
diffusion process, with a wavenumber-dependent vis-
cosity. To maintain an energy cascade we drive the
turbulent fields by a random force, f, whose Fourier
components in general also depend upon wave-
number. Appropriate dimensional arguments reveal
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that the diffusion model gives results consistent with
both the ¢ — 5/3’ energy spectra in the Kolmogorov
inertial subrange and the ¢ — 3> spectra in the two-
dimensional, ‘enstrophy cascade’, régime.

We now proceed to use this model in our discussion
of plankton spectra and patchiness.

3. COUPLING BIOLOGY AND PHYSICS:
PLANKTON SPECTRA AND PATCHINESS

We now consider plankton species embedded in a
turbulent environment. We ignore the motility of the
organisms, assuming they are passive in the ambient
flow. The plankton populations are reactive, interact-
ing with themselves and other species (i.e. intra- and
interspecific interactions). Thus, fluctuations in the
population densities\may arise from both the turbu-
lence in the environment (the ‘diffusion’), as well as
the species interactions (the ‘reaction’).

Our approach is to derive the variance spectrum of
the fluctuations in ‘interacting plankton populations
using the approximate diffusion model of turbulence
sketched in the previous section. One starts from the
general formulation

DS;(x,t)/Dt = INTERACTION, (9)

where D/D¢ is the material derivative, and §;(x,f) the
concentration of the jth species as a function of
position (x) and time (¢). In the usual fashion
(McComb 1991), analogous to the Reynolds decom-
position for the velocity, one expresses S; and u in
terms of their mean and fluctuating values (we assume
that the mean values for all the components of u
vanish). Again, in the usual fashion, one defines a
diffusivity, D; for the jth species in terms of a mean
gradient of §; and the correlation between S§; and
components of u. Most importantly, referring to
equations (5b) and (7b), the diffusivity thus defined is
assumed to have the same dependence upon £ (and ¢
and 6) as the eddy viscosity in our approximate
diffusion model of turbulence of the previous section.
Thus,

S0t = D;V2S; + F\(S) + P,

J J

(10)

Jj=1..,n l=1,...,n

where S;(%,f) = concentration of jth species; D; is the
diffusivity of jth species; F; is the reaction term
(population dynamics) for the jth species; and P is the
random environmental fluctuation (forcing) of the jth
species not associated with ‘diffusion’ or population
dynamics

Note that we have expressed the INTERAGTION term of
equation (10) as the sum of two terms. The first, F, is
the ‘reaction’ term that arises from the intra- and
interspecific interactions between species: it is the
effect of ‘population dynamics’ upon the jth species.
The second, P, is a (random) environmental fluctua-
tion (or forcing) of the jth species. It is not associated
with either the ‘diffusion’ or the ‘reaction’ (the
population dynamics). Such a term might arise from a
fluctuating resource field, perhaps due to fluctuating
nutrient conditions, that an organism experiences in
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the fluid environment. Alternatively, it might arise
from differing growth conditions controlled by the
rapidly varying temperature seen by planktonic
organisms in the sea.

We next decompose S; and P; into their mean and
fluctuating components: ;=S + 5/, and P, = P, +
P/. F(S) and P, are assumed to vanish. We substitute
into (10), and linearize around the mean values of \$;

and P, which leads to

5S//0t = DJVZS}’ + alej/ + 1'?7‘,, - (11)

OF;
G ===\ o
1es|S,

Proceeding as in the previous section we take
Fourier components (denoted by ~ ) of §/ and P/.
This leads to a matrix equation, analogous to equa-
tion (3), for S/ in terms of P/.

AS=P or S=A4A'P (12)

where

—ia)+D1k2—a11 — a2

Turbulence, diffusion and patchiness in the sea

(a) Two cases

We will restrict our attention to two cases: a single
species in a turbulent environment, and two interact-
ing species. Our single species results are consistent
with those from previous studies; accordingly, we
devote more space to our two species results.

(1) A single species (j = 1)
The matrix A4 in equation (12) reduces to one
element. Substitution into equation (13) gives

Qi (k)

Es1<k) = —~—~—|le2 — ’lul.

(14)

One additional parameter must be introduced to
proceed with dimensional arguments, namely, the
dissipation rate of concentration fluctuations (or dissi-
pation rate of plankton density fluctuations), y;. This
quantity is completely analogous to ¢ of the previous
section. It is the rate at which concentration fluctua-
tions are dissipated at small scale (ultimately) by

— a1y

A- — 6'121 —iw+ D2k2 — a9y
_ ;1”1 —iw + Dk — ap,
S Py
< | S 5 | P :
S=1 "1, pP=y .71, and primes have been dropped.
S, P,

The n x n matrix equation arises because the n species
may interact with one another. In equation (12) the
off-diagnonal elements of A contain only biological
(‘reaction’) terms. The diagonal elements have both
‘reaction’ and ‘diffusion’ effects.

Again, one can integrate over all directions in
wavenumber (k) space, and over all frequencies, o, to
obtain an expression that relates the power spectrum
[Q)(k)] of the random environmental fluctuation, or
forcing (P)), to the power spectrum [Eg (k)] of the jth
species concentration ().

Eg(k) = [dw}, A7 V" (ko)A " (k,0)Q(k). (13)

The units for Q(k) are (C?LT ') and for Eg(k) are
(C2L), where C denotes concentration of planktonic
species. Furthermore, note that Eg(k) is no longer
proportional to a single @,(£) as in the analogous
expression (4). Rather, Es(k) is a linear combination
of all the Q,k)s, {=1, ., n, due to species
interactions. Moreover, it is no longer possible to
make even approximate statements about the relative
rates of falloff with wavenumber of Eg(k) and the
Q,(k)s. This is because each @,(k) enters equation (13)
with a different coefficient, each of which can have
different £-dependence, as the individual components
of A have different dependence upon wavenumber
(see equation (12)).

Phil. Trans. R. Soc. Lond. B (1994)

molecular processes. Its units are (C27T ~ 1), where C is
concentration. Hence quantities like Q;(k) and D (k)
(and Ej (£)) will now depend on £, ¢, and .
The inertial subrange

Dimensional arguments lead to
Ql oC X1 k= 1)

Dl o 81/3 k —4/3 _ o 81/3 k —4/3,

(15a)
(15Db)

where a is merely a dimensionless constant of propor-
tionality. Substitution of (15a,b) into (14) gives

-1

11k

d: —_——
1 |OC81/3 k —2/3

E; .
- anl

(16)
Note that when a;; vanishes (i.e. non-reacting) then
Eg (k) oc ;67 "3k =%® consistent with the results of
early investigators (e.g. Corrsin 1951).

When a;; does not vanish two cases arise: ay;
negative (figure la), and a;; positive (figure 14). In
both cases when £ > £, (i.e. small scale), then FEj (k) oc
k~®? where k, = (kiss LENGTH) ! = (ay,/e'®)*2, (The
KISS LENGTH) is the minimum size patch which can
maintain itself in the face of diffusion (Okubo 1980).)
Moreover, in both cases, when £ < £, (i.e. large scale),
then Ej (k) oc k~'. Thus, at small scales, the distribu-
tion of ‘patchiness’ has the same shape as environmen-
tal turbulence, i.e. it is controlled solely by turbulence;
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(@)
mv')"
£
In k
'a l 312
11
ke=| ——
£l/3
=(KISS LENGTH) !
(®) !
' a11>0
1
1
veddil
S
5 “a
K i
= Y
- o
' —-5/3
1
1
t
k In k

o

Figure 1. (a) a11<0. The power spectrum of concentration
fluctuations of a single species in the inertial subrange of a
turbulent velocity field. Note the change in slope at the kiss
LENGTH. (b) a;1>0. The power spectrum of concentration
fluctuations of a single species in the inertial subrange of a
turbulent velocity field. There is a singularity at the Kiss
LENGTH indicating high variance, i.e. large patchiness, at
this length scale.

and the ‘reaction’ terms play no role in the spatial
distribution of planktonic organisms. However, at
large scales the power spectrum of plankton density
fluctuations is flatter (i.e. ‘whiter’) than the energy
spectrum; i.e. the intensity of patchiness is less than
that of environmental turbulence fluctuations. Put
another way, large scale structures in plankton distri-
bution have less power than structures found at the
same scale for a non-reacting, passive quantity found
in the same aquatic environment. Denman & Platt
(1976) first described these relations (also see Denman
et al. 1977); their theoretical curves are identical to
figure la. For the case a;; > 0, there is a singularity at
k =k, (i.e. at length scale = (KIss LENGTH); see figure

Phil. Trans. R. Soc. Lond. B (1994)
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15). Here the patchiness should be strong within the
range of length scales close to k£, 7! = (kiss LENGTH).
This perhaps explains the peak in the observations of
Powell ¢t al. (1975), and it is analogous to the (Fickian
diffusion) calculations of Fasham (1978).

Two-dimensional turbulence

Again, on dimensional grounds
Quoc ya k7, (17a)
Dyoc 0P k2 =af?f 2

where o is again a dimensionless constant of propor-
tionality. Substitution of (17a,b) into (14) gives

xk?
Eg o [0 “—an|’ (18)
oc k! ( # k% i.e. ‘whiter).

In this case g (k) oc k = for all wavenumbers (length
scales). Thus, for the entire two-dimensional range in
k, the slope of the power spectrum of plankton density
fluctuations ( oc £ ~1) is less than that for environmen-
tal turbulence fluctuations ( oc £ ~®). These results are
identical to those given by Bennett & Denman (1985).
Parenthetically, Denman (1983) (and Bennett &
Denman (1985)) makes the important point that to
have any differences between ‘the physical spectrum’
and ‘the plankton spectrum’ (i.e. any modification to
‘the physics’ due to ‘the biology’) the growth rates for
plankton populations must vary in space. In our
formulation that is equivalent to the existence of the
power spectrum [Q;(k)] due to the random environ-
mental fluctuation, or forcing (P); i.e. [Q,(k)] cannot
vanish for all [ species, [ =1, .. ., n.

(i) Two interacting species
The matrix A in equation (12) reduces to a 2 x 2
matrix.

A=(iw+le2—a11
— a1

C e ) (19)
i + Dok? — a5 )
The power spectrum of plankton fluctuations must
depend on several more variables than in the single
species case. That is, E (k) = ESIJ(QI,QZ;Dl,DZ;a,-j;
,k). Space does not permit us to display the manipu-
lations that arise when the expressions in equation
(19) are substituted into equation (13). We merely
quote the results for the non-reacting case (¢; = 0). In
the inertial subrange the power spectra for both (non-
interacting) species are oc k ~®? for the two-dimen-
sional turbulence case, the power spectra are oc k™"
This is, of course, what one would expect for non-
interacting, passive tracers: they follow the non-
reacting, single species cases (see equations (16) and
(18))!

Now consider interacting species. We explore a
simple case: a;; = agy = 0; a1 # 0, ag; ¥ 0. This is the
Lotka—Volterra predator—prey model. Equation (20)
gives the results for K (k) and Eg,(k) (where we have
left out the details of the calculations arising from
substitution into equation (13)).
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(@)
hf reactive
- = portion is
fluid ‘redder’
turbulence
Ink
®)

reactive fluid
spectrum turbulence
is 'whiter'

Ink

Figure 2. (a) The power spectrum of concentration fluctua-
tions of two interacting species (i.c. Lotka—Volterra preda-
tor-prey) in the inertial subrange of a turbulent velocity
field. The population interaction leads to more intense
patchiness at large scales (i.e. the spectrum is ‘redder’ than
that for passive particles in turbulence in the inertial
subrange). (4) The power spectrum of concentration fluc-
tuations of two interacting species (i.e. Lotka-Volterra
predator-prey) in a two-dimensional turbulent velocity
field. The population interaction leads to less intense
patchiness at large scales (i.c. the spectrum is ‘whiter’ than
that of two-dimensional fluid turbulence).

w6 77'0122 Qs
Eg (k) =
s, (k) Dt Dy + Do) DiD; 7 (20a)
Qs 770221 [
Eg (k) =
Sz( ) D2 k2 + (Dl + DQ)Dng k6' (QOb)
non- modifications due to
reacting ~ biological interactions

We note (without proof) that the first two terms of
(20a) and (20b) are identical to E (k) and Eg(k) in
the non-reacting (a; = 0) case. The second terms
in (20a) and (20b) arise solely from the biological
interactions between species (in this case predator-
prey interactions). (Note, our analysis assumes that
|a12a0:|/ (D1 D2)] < k*.) Note further that in the ‘bio-
logical interaction’ terms the square of a;, (and ay)
appears; the sign is immaterial.

The inertial subrange
Following (15a,b)

Ql oC X1 k- 1>
D2>Dl oC 81/3k - 4/3,

QeoC x2 k7Y, (21a)

(21b)
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so that substitution into (20a,b) leads to
Eg(k)y =M yie Pk P 4 Brabyse k5,

Eg, (k) = X3 12 e kP Byadipe kR
(passive) (reactive)

(22a)
(22b)

The As and fs are constants. Note that the reactive
term has a steeper slope (i.e. k£ %, it is ‘redder’) than
the £ %3 behaviour that is characteristic of passive
transport by turbulence in the inertial subrange (see
figure 2a). Thus, this simple Lotka-Volterra predator-
prey system develops more variance at large length
scales (i.e. has more intense, large ‘patches’) than a
system of merely passive particles (see Steele and
Henderson 1977).

Two-dimensional turbulence.

Following (17a) and (17Db)

Qo x1 kY, Qo oC xo k1, (23a)
Dy, Dy oc 012 2, (23b)
and substitution into (20a,b) gives

Eg (k) =000 "2k "+ o0l 1,072 k"1, (24a)
Eg(k) =03 220 "k~ + 0ya5 0, 073% 1. (24b)

(passive) (reactive)

The os are constants.

Here both the passive and the reactive terms exhibit
k=" behaviour. This slope is less (i.e. flatter, or
‘whiter’) than that for the environmental turbulence
(see equation (8)). That is, the intensity of patchiness
is weak, with less tendency toward large, intense
patches, than the turbulent behaviour that is domi-
nated by large, intense eddying motion.

4. CONCLUSION

Do any genecralities emerge from our studies of the
modifications that biological processes make to the
patchiness imposed solely by physical processes? We
answer no. Specifically, does any general behaviour
emerge from the alterations that biological ‘reactions’
make on the slopes of the straight lines found in the
log-log spectral plots of figures 1 and 2? Again, we
answer no. Depending upon the diffusion model,
biological interactions can either ‘redden’ the physi-
cally derived spectrum (see figure 2a), or ‘whiten’ the
physically derived spectrum (see figure 2b); and which
occurs might well depend upon the length scale under
observation (e.g. greater (or less) than the kiss
LENGTH, see figure 1). Careful statistical description of
the spatial distribution of plankton populations by
itself is unlikely to give much information about the
biological mechanisms at work. The recent emphasis
on understanding detailed mechanisms that determine
each individual feature has much to recommend it.
Indeed, the small details do count!

Our general conclusions mirror those for terrestrial
environments. In a thorough study Roughgarden
(1978) considered the effect of competition between
species on patchiness. The dispersal process used by
Roughgarden (a ‘geometric dispersal model’ (Rough-
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garden 1977), although a ‘stepping stone’ model could
also be utilized) differs greatly from the turbulent
diffusion formulation we employ. None the less, the
details of Roughgarden’s (1978) calculations are re-
markably similar to our own (the results are even
phrased in spectral terms!), and lead to similar
conclusions. Depending on the specific values of model
parameters Roughgarden finds that competition may
lead to ‘. . . more distinct and longer patches . . ., or
‘... reduce patch distinctiveness and patch length . . ..
That is, biological interactions (in this case competi-
tion) can either flatten (‘whiten’) plankton variance
spectra, thus decreasing patch distinctiveness and
increasing patch length, or steepen (‘redden’) spectra
by increasing patch distinctiveness and shortening
patch length. These are identical to our own conclu-
sions; i.e. biological interactions may either ‘redden’
or ‘whiten’ the spectrum of fluctuations that is due to
the ‘physical’ process of diffusion alone. One should
expect no general results that describe in all (or most)
cases how ‘the biology’ modifies a spatial pattern that
has arisen solely from the dispersal of species in a
terrestrial habitat.

Inasmuch as one should expect biological interac-
tions to modify ‘the physics’ in various ways, one
might also expect that several biological mechanisms
might lead to the same (or very similar) spatial
patterns in the plankton. One example is the flatten-
ing of the spectrum (i.e. ‘whitening’) for higher
trophic levels. That is, several examples exist of
spectra that describe the spatial distribution of zoo-
plankton that are significantly flatter than the spectra
for phytoplankton collected simultaneously (Mackas
& Boyd 1979; Weber et al. 1986). One explanation for
this observation is that aggregation behavior at small
scale leads to higher variance at large £. But Steele &
Henderson (1992) present a model study in which
Fickian diffusion, plus the nonlinear coupling of
phytoplankton to their zooplankton predators, is
sufficient to ‘flatten’ the spectrum. No data presently
exists to distinguish between these two explanations.
Again, the small details do count.
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